
Scaffolding with JMock

Course of Software Engineering I
A.A. 2011/2012

Valerio Maggio, PhD Student
Prof. Adriano Peron

2
Outline

● Brief Recap
● Unit Testing
● JUnit (case study)

● Test Scaffolding
● Stubs
● Mocks

●JMock Example

3
Example Scenario

(… not properly related to Computer Science :)

●Please, imagine that you have to test a building
● Test if it has been constructed properly
● Test if it is able to resist to earthquake
● ….

● Q: What types of “testing” would you do?
● Q: What should be the “starting point”?

● Make an educated guess

4
Unit Testing

► Testing of the smallest pieces of a program
● Individual functions or methods

► Keyword: Unit
● (def) Something is a unit if it there's no

meaningful way to divide it up further

► Buzz Word:
● Testing in isolation

5
Unit Testing (cont.)

► Unit test are used to test a single unit in
isolation

● Verifying that it works as expected
● No matter the rest of the program would do

► Possible advantages ?
● (Possibly) No inheritance of bugs of mistakes from

made elsewhere
● Narrow down on the actual problem

6
Unit Testing (cont.)

► Is it enough ?
● No, by itself, but...

► … it is the foundation upon which everything is
based!

► (Back to the example)
● You can't build a house without solid materials.
● You can't build a program without units that works

as expected.

7
Testing RoadMap

8

Test Scaffolding

9

Integration Testing Example

10
Integration testing problem

► Integrate multiple components implies to
decide in which order classes and subsystems
should be integrated and tested

► CITO Problem
● Class Integration Testing Order Problem

► Solution:
● Topological sort of dependency graph

11
Integration testing example

12
Testing in isolation

► Testing in isolation offers strong benefits
● Test code that have not been written
● Test only a single method (behavior) without side

effects from other objects

► Solutions ?
● Stubs
● Mocks
● …

13
Testing in Isolation: example

14

Solution with stubs

15

Solution with (Pseudo) Mocks

16
Key Ideas

(Ignoring the specifics of codes)

► Mocks do not provide our own implementation of
the components we'd like to swap in

► Main Difference:
● Mocks test behavior and interactions between

components

● Stubs replace heavyweight process that are not
relevant to a particular test with simple
implementations

17
Mock Objects Observations

► Powerful way to implement Behavior
Verification

● while avoiding Test Code Duplication between
similar tests.

► It works by delegating the job of verifying the
indirect outputs of the SUT

► Important Note: Design for Mockability
● Dependency Injection Pattern

18
Design for Mockability

► Dependency Injection

19

Dependency injection issues?
►Too Many Dependencies

● Ideas??

20

Dependency injection issues?

►Dependency injection for mockability

21
Mock Libraries

► Two main design philosphy:
● DSL Libraries
● Record/Replay Models Libraries

► Record Replay Frameworks
● First train mocks and then verify expectations

► DSL Frameworks
● Domain Specific Languages
● Specifications embedded in “Java” Code

22

JMock Example

23
JMock features

► JMock syntax relies heavily on chained
method calls

● Sometimes difficult to decipher and to debug

► Common Patterns:
invocation-count
(mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));

24

JMock Working Example

25
JMock features (intro)

► JMock previsous versions required subclassing
● Not so smart in testing

● Now directly integrated with Junit4

● JMock tests requires more typing

► JMock API is extensible

26

JMock Example

27

1. Test Fixture

►Mockery represents the context

● Neighboring objects it will communicate with
● By convention the mockery is stored in an istance

variable named context
►@RunWith(JMock.class) annotation

►JUnit4Mockery reports expectation failures as
JUnit4 test failures

28

2. Create Mock Objects

►The tests has two mock turtles
● The first is a field in the test class
● The second is local to the test

►References (fields and Vars) have to be final
● Accessible from Anonymous Expectations

►The second mock has a specified name

● JMock enforces usage of names except for the first
(default)

● This makes failures reporting more clear

29

3. Tests with Expectations

►A test sets up it expectations in one or more
expectation blocks

● An expectation block can contain any number of
expectations

● Expectation blocks can be interleaved with calls to
the code under test.

30

3. Tests with Expectations

►Expectations have the following structure:

invocation-count
(mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));

31
What are those double braces?

context.checking(new Expectations(){{
oneOf(turtle).turn(45);

}});

► Anonymous subclass of Expectations
► Baroque structure to provide a scope for building up

expectations
● Collection of expectation components
● Is an example of Builder Pattern
● Improves code completion

32
What are those double braces?

context.checking(new Expectations(){{
oneOf(turtle).turn(45);

}});

33

context.checking(new Expectations(){{
ignoring (turtle2);
allowing (turtle).flashLEDs();
oneOf(turtle).turn(45);

}});

► Expectations describe the interactions that are essential to the
protocol we're testing

► Allowances support the interaction we're testing
● ignoring() clause says that we don't care about messages

sent to turtle2
● allowing() clause matches any call to flashLEDs of
turtle

Allowances and Expectations

34

context.checking(new Expectations(){{
ignoring (turtle2);
allowing (turtle).flashLEDs();
oneOf(turtle).turn(45);

}});

► Distintion between allowances and expectations is not rigid

► Rule of Thumb:
● Allow queries; Expect Commands

► Why?
● Commands could have side effects;
● Queries don't change the world.

Allowances and Expectations

35
References

► Professional Java JDK 5 Edition
● Richardson et. al., Wrox Publications 2006

► Growing Object-Oriented Software,
Guided By Tests

● Freeman and Pryce, Addison Wesley 2010

► Jmock project site
● http://jmock.org

36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

