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Outline

● Brief Recap
● Unit Testing
● JUnit (case study)

● Test Scaffolding
● Stubs
● Mocks

●JMock Example
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Example Scenario

(… not properly related to Computer Science :)

●Please, imagine that you have to test a building
● Test  if it has been constructed properly
● Test if it is able to resist to earthquake
● ….

● Q: What types of “testing” would you do?
● Q: What should be the “starting point”?

● Make an educated guess
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Unit Testing

► Testing of the smallest pieces of a program
● Individual functions or methods

► Keyword: Unit
● (def) Something is a unit if it there's no 

meaningful way to divide it up further

► Buzz Word:
● Testing in isolation
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Unit Testing (cont.)

► Unit test are used to test a single unit in 
isolation

● Verifying that it works as expected
● No matter the rest of the program would do

► Possible advantages ?
● (Possibly) No inheritance of bugs of mistakes from 

made elsewhere
● Narrow down on the actual problem
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Unit Testing (cont.)

► Is it enough ?
● No, by itself, but...

► … it is the foundation upon which everything is 
based!

► (Back to the example)
● You can't build a house without solid materials.
● You can't build a program without units that works 

as expected.
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Testing RoadMap
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Test Scaffolding
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Integration Testing Example
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Integration testing problem

► Integrate multiple components implies to 
decide in which order classes and subsystems 
should be integrated and tested

► CITO Problem
● Class Integration Testing Order Problem

► Solution:
● Topological sort of dependency graph
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Integration testing example
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Testing in isolation

► Testing in isolation offers strong benefits
● Test code that have not been written
● Test only a single method (behavior) without side 

effects from other objects

► Solutions ?
● Stubs
● Mocks
● …
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Testing in Isolation: example
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Solution with stubs
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Solution with (Pseudo) Mocks
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Key Ideas

(Ignoring the specifics of codes)

► Mocks do not provide our own implementation of 
the components we'd like to swap in

► Main Difference:
● Mocks test behavior and interactions between 

components

● Stubs replace heavyweight process that are not 
relevant to a particular test with simple 
implementations
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Mock Objects Observations

► Powerful way to implement Behavior 
Verification 

● while avoiding Test Code Duplication between 
similar tests.

► It works by delegating the job of verifying the 
indirect outputs of the SUT

► Important Note: Design for Mockability
● Dependency Injection Pattern
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Design for Mockability

► Dependency Injection
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Dependency injection issues?
►Too Many Dependencies

● Ideas??
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Dependency injection issues?

►Dependency injection for mockability
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Mock Libraries

► Two main design philosphy:
● DSL Libraries
● Record/Replay Models Libraries

► Record Replay Frameworks
● First train mocks and then verify expectations

► DSL Frameworks
● Domain Specific Languages
● Specifications embedded in “Java” Code
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JMock Example
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JMock features

► JMock syntax relies heavily on chained 
method calls

● Sometimes difficult to decipher and to debug

► Common Patterns:
invocation-count 
(mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));
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JMock Working Example
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JMock features (intro)

► JMock previsous versions required subclassing
● Not so smart in testing

● Now directly integrated with Junit4

● JMock tests requires more typing

► JMock API is extensible
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JMock Example
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1. Test Fixture

►Mockery represents the context

● Neighboring objects it will communicate with
● By convention the mockery is stored in an istance 

variable named context
►@RunWith(JMock.class) annotation

►JUnit4Mockery reports expectation failures as 
JUnit4 test failures
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2. Create Mock Objects

►The tests has two mock turtles
● The first is a field in the test class
● The second is local to the test

►References (fields and Vars) have to be final
● Accessible from Anonymous Expectations

►The second mock has a specified name

● JMock enforces usage of names except for the first 
(default)

● This makes failures reporting more clear
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3. Tests with Expectations

►A test sets up it expectations in one or more 
expectation blocks

● An expectation block can contain any number of 
expectations

● Expectation blocks can be interleaved with calls to 
the code under test.
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3. Tests with Expectations

►Expectations have the following structure:

invocation-count 
(mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));
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What are those double braces?

context.checking(new Expectations(){{
oneOf(turtle).turn(45);

}});

► Anonymous subclass of Expectations
► Baroque structure to provide a scope for building up 

expectations
● Collection of expectation components
●  Is an example of Builder Pattern
● Improves code completion
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What are those double braces?

context.checking(new Expectations(){{
oneOf(turtle).turn(45);

}});
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context.checking(new Expectations(){{
ignoring (turtle2);
allowing (turtle).flashLEDs();
oneOf(turtle).turn(45); 

}});

► Expectations describe the interactions that are essential to the 
protocol we're testing

► Allowances support the interaction we're testing
● ignoring() clause says that we don't care about messages 

sent to turtle2
● allowing() clause matches any call to flashLEDs of
turtle

Allowances and Expectations
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context.checking(new Expectations(){{
ignoring (turtle2);
allowing (turtle).flashLEDs();
oneOf(turtle).turn(45); 

}});

► Distintion between allowances and expectations is not rigid

► Rule of Thumb:
● Allow queries; Expect Commands

► Why?
● Commands could have side effects;
● Queries don't change the world.

Allowances and Expectations
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